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PREFACE

Part of the RAND research program consists of basic

supporting studies in mathematics. This Memorandum is

the first in a series dealing with a number of rigorous

aspects of the highly useful mathematical theory known

as invariant imbedding. In this theory invariance prin-

ciples are applied to handle a variety of conceptual and

computational aspects of mathematical physics.

The research presented here was sponsored by the

Advanced Research Projects Agency.



SUMMARY

In a series of papers of which this is the first,

we wish to study some of the rigorous aspects of invariant

imbedding: existence and uniqueness of solution, asympto-

tic behavior over space and time, stability, computational

stability, applications to classical boundary-value theory,

and so on.

The first paper will be devoted to the use of an

important conservation property, obvious on physical

grounds, in establishing the existence of the solution of

a matrix Riccati equation without recourse to the asso-

ciated linear differential equation, and thus without

any appeal to spectral theory.
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EXISTENCE AND UNIQUENESS THEOREMS IN INVARIANT IMBEDDING -

I: CONSERVATION PRINCIPLES

1. INTRODUCTION

Invariant imbedding is a mathematical theory designed

to handle a variety of conceptual, analytic, and computa-

tional aspects of mathematical physics in a unified fashion

without the intervention of boundary-value problems. By

means of appropriate choices of space and time variables,

all problems are of initial-value type. An expository

account of the application of this theory to neutron trans-

port, radiative transfer, diffusion, and scattering will

be found In [I]; application to wave propagation will be

found in (2], [3].

Invariant imbedding is a systematic application and

extension of the "invariance principles" introduced into

the study of radiative transfer by Ambarzumian and

Chandrasekhar, (4]. More generally, it utilizes the

"point-of-regeneration" technique of the type used by

Bellman and Harris in the study of branching processes,

(5]; see also Harris, [6].

Over the last few years, frequently in collaboration

with Ueno (7], we have derived a large number of functional

equations describing a variety of physical processes, and

carried out some large-scale numerical calculations

([8], (9]).
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2. THE MATRIX RICCATI EQUATION

The equation we wish to study is

(1) R'(x) = B(x) + D(x)R(x) + R(x)D(x) + R(x)B(x)R(x),

R(O) - 0,

where B, D, and R are N x N matrices and it is

assumed that

(2) (a) dIj(x) > 0, i ' J,

(b) d jj(x) < 0,

(c) bij(x) > 0.

Rather than tackle this equation directly, let us indicate

its physical source, and then show how the simultaneous

consideration of R(x) and two related functions enables us

to establish existence of the solution of (1) for all

x > 0 in a simple and painless fashion.

3. STEADY-STATE NEUTRON TRANSPORT WITH DISCRETE ENERGY

LEVELS

Let us begin by describing a model of a steady-state

transport process which will be the explicit or implicit

source of many of the analytical ideas we shall utilize

in what follows.

Consider an idealized neutron-transport process

taking place in a one-dimensional homogeneouq isotropic

rod extending along an axis from z = 0 to z = x. We
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suppose initially that there are only a finite number, N,

of different types of particles moving along the rod.

These possible states can be considered to be energy

levels, labelled i = 1, 2, "'', N.

It is assumed that when a particle in state i

traverses a segment of the rod, it is subject to inter-

actions with the substance composing the rod. These

interactions produce two possible effects: forward or

backward scattering into any of the N possible states,

and absorption. However, no fission occurs, which is to

say, there is no spontaneous generation of new particles.

It follows that the total number of particles in the

process, taking account of those absorbed as well as of

those scattered, is changed only by addition from an

external source. This obvious conservation principle

will be the key to the result obtained below concerning

the existence of the solutions of (2.1).

In this paper, we shall exclude the possibility of

collisions or interactions between neutrons themselves.

This will permit us to use ordinary differential equations

in our application of invariant imbedding. Subsequently,

when dealing with collisions, we shall encounter hyper-

bolic partial differential equations.

Finally, let us note that as far as the analysis is

concerned, one-dimensional transport with energy levels

is equivalent to two-dimensional transport in a plane
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parallel slab with energy and angular dependence. We are

thus treating a quite general transport process connected

with a geometric figure such as sphere, cylinder, or

plane-parallel region.

4. ANALYTIC PRELIMINARIES

Let us now make the model of a transport process

discussed above more precise. We suppose that when a

particle in state J (j - 1,2,''',N) enters the

infinitesimal segment of length a contained in

[x + A,x] from either direction (the assumption of

isotropy), the following events take place:

(1) (a) The expected number leaving the segment in

state J, moving in the same direction, is

I + dj 1 (x)A + O(A2 ).

(b) The expected number leaving the segment in

state i, i yl J, moving in the same direction,

is dij(x)A + O(A2). (Forward scattering.)

(c) The expected number leaving the segment,

moving the opposite direction in state 1, is

b I(x)A + O(42). (Back scattering.)

(d) The expected number absorbed by the medium is

fii(a) + O(A2).

We call the matrices D(x) = (dij(x)), B(x) - (bij(x)),

F(x) - (fii(X)6ji), the forward scattering, back

scatterina, and absorption matrices, respectively.
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We assume, on physical grounds, that

(2) (a) dij(x) > 0, i * J,

(b) bia(x) > 0,

(c) fii(x) > 0,

for x > 0. The basic aRumption of the conservation of

matter requires that

N N
(3) djj(x) - z bij(x) + f d i(x) + fjj x)]

[I= 1i-l
i;4a
J - 1,2,.. .,N.

This implies that d 3 (x) < 0, a condition required to

account for the increments to other states and for the

particles absorbed.

Introducing the matrix

1 1 ... 1

(4 ) Mm 0 0 ... 0 ,

0 0 ... 0

the relations of (3) can be written in the simple fon

(5) M(B(x) + D(x) + F(x)) = 0, x > 0.

This is the fundamental conservation assumption

which will yield a corresponding conservation relation

for the matrix functions introduced below.
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5. REFLECTION, TRANSMISSION AND LOSS MATRICES

Let us now introduce the following functions. For

i,j = 1,2,...,N, let

(1) rij(x) = expected flux of neutrons in state i.

reflected from a rod of length x,

resulting from an incident flux at

x of unit intensity in state J;

tij(x) = expected flux of neutrons in state i,

transmitted through a rod of length

x resulting from an incident flux at

x of unit intensity in state 3;

tij(x) = expected flux of neutrons in state i,

absorbed within a rod of length x,

resulting from an incident flux at

x of unit intensity in state J.

Schematically,

t i(x) r rlj(x)

0 ti x) x

Fig. 1

When we say a rod of length x, we mean one whose ends

are respectively at the fixed position 0 and the
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variable position x, as pictured above. As a conse-

quence of the assumption made above concerning no

interaction between neutrons, the reflections, trans-

missions and absorptions depend linearly upon the intensity

of the incident flux. Hence we may restrict ourselves

here to unit incident fluxes.

Let R(x) = (rij(x)), T(x) = (tij(x)), L(x) = tlj(X))

be called respectively the reflection, transmission, and

absorption matrices. Using invariant imbedding techniques,

as indicated in (1], we can derive differential equations

for these matrices. For the sake of completeness, let

us present the derivation here.

Consider the process described above for a rod of

length x + A and let an incident flux c be applied at

x + A. Here c is a vector flux whose J-th component

represents the intensity of the incident flux in state

J. By virtue of the assumptions of Sec. 4, this results

in a flux of (I + DA)c incident at x, a flux of Bca

reflected from x + A, and a flux of FcA absorbed, all

to terms in O(A 2). The flux (I + DA)c incident at x

results in a flux R(x)(I + DA)c reflected at x, a

flux T(x)(I + DA)c transmitted through the rod, and a

flux L(x)(I + DA)c absorbed in (x,0]. Here B, D,

and F depend upon x, as Indicated above.

The flux R(x)(I + DA)c now enters the segment

[x,x + a] and results in further interactions. As a



result of this, we have the additional reflection

(1 + DA)R(x)(I + AD)c, an additional absorption

(AF)R(x)(I + DA)e - AFR(x)c + 0(A2 ), and a quantity

ABR(x)c + 0(A2 ) as incident flux upon [x,0]. This

incident flux results in a reflection from [x,0] of

R(x)(ABR(x)c) + 0(A2 ), a transmitted flux of

T(x)(ABR(x)c) + 0(42 ), and a loss of L(x)(ABR(x)c) +

O(A 2). The flux RBRA + 0(A 2) through [x,x + A]
contributes RBRA + 0(a2 ) to the total reflected flux.

Schematically, we have

(I+DD)R(x)(I+DA)c

R(x)BR(x)A

A BR (x) c
cR(x)(I+DA)c

T-(x) I+DA c+4-

t -(I+DA)c
0 ,xx+A c

,L(x)(I+DA)c FcA

L(x)BR(x)cA (AF)R(x)(I+DA)c

Pig. 2
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Adding up these effects, we obtain the recurrence

relations

(2) R(x+A)c - BcA + (I+DA)R(x)(I+DA)c

+ R(x)BR(x)cA + o(A
2 ),

T(x+A)c - T(x)(I+DA)c + T(x)BR(x)cA + O(A
2 ),

L(x+A)c - FcA + L(x)(I + DA)c + FR(x)c&

+ L(x)ER(x)cA + 0(A 2 ).

Since these equations hold for arbitrary c, we can

discard c. Expanding the left-hand side, and passing to

the limit as A - 0, we obtain the Riccati differential

equations

(3) R'(x) - B + DR(x) + R(x)D + R(x)BR(x),

T'(x) - T(x)(D + BR(x)),

L'(x) - L(x)(D + BR(x) + F(1 + R(X)),

with the physically obvious initial conditions

(4) R(O) - 0, T(0) - I, L(O) - 0.

Observe that of the three functions, it is only the

reflection function which occurs alone, independently of

the other two. The remaining two functions have been

deliberately introduced to take advantage of conservation

properties.
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6. EXISTENCE AND UNIQUENESS OF SOLUTIONS

The conventional existence and uniqueness theory of

ordinary differential equations establishes the existence

and uniqueness of a solution of (5.3) over some initial

interval [O,a]. Since it is intuitively clear that the

reflection, transmissionand loss functions must exist

for all x > 0 (since no fission is allowed), the

question arises as to how to establish this analytically.

For the case of constant coefficients (homogeneous rod),

we can reduce the equations to linear equations with

constant coefficients and use the explicit solutions to

help us. For inhomogeneous equations, this approach is

more difficult.

To obtain an equivalent linear equation, let us first

proceed formally. Consider the two first order matrix

equations

(1) X' = EX + FY,

Y' = GX + HY,

where E, F, G, and H can be dependent on x. Consider the

mtrix Z - XY - . We have

(2) z = (xy-l)1

= (EX + FY)Y 1 - x(y(ox + H)r-)

= EZ + F - ZGZ - ZH,
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an equation similar to that satisfied by R(x). The

identification is complete if we set

(3) E-D, F= B, H--D, G=-B,

so that (I) becomes

(4) X, = DX + BY,

Y' = -BX - DY.

This procedure is much more than formal, since it

turns out that the equations of (4) are the transport

equations obtained by applying the usual procedure to

the study of the fluxes inside the rod.

As indicated above, it is not a trivial matter to

study (4) when B and D are variable matrices.

To establish nonlocal existence of the solutions of

(5.3), we add two ingredients: nonnegativity of the

matrices R(x), T(x), and L(x), and the conservation

relation

M(R(x) + T(x) + L(x)) - M.

Both of these conditions are intuitively clear, and, as

we shall see, readily established rigorously. Once we

have done this, it follows that R(x), T(x), and L(x)

are uniformly bounded over any interval of existence.

It follows that the solutions can be continued for all

x > 0. We are going through this in some detail since
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the same line of reasoning can be employed for many

classes of functional equations arising in mathematical

physics.

7. PROOF OF CONSERVATION RELATION

To establish the conservation relation of (6.1), we

consider the function

(1) Q(x) - M(R(x) + T(x) + L(x))

and differentiate it with respect to x. We have

(2) Q,(x) - M(R' + TO + L')

- M(R + T + L)(TR + D) + M(DR + FR + B + F)

- Q(BR + D) + M(DR + FR + B + F),

upon using the equations of (5.3).

Considered as a differential equation in Q, we

observe that (2) is satisfied by Q(x) - M, since

(3) M(BR + D) + M(DR + R + B + F)

- M(B + D + F)(R + I) - 0,

by virtue of (4.5). Since Q(O) = M, we see that

Q(x) - M within the interval of existence of R(x), T(x),

and L(x). This argument can now be repeated from

interval to interval.

It is remarkable that one has to use this sophisti-

oation to establish a relation which is so immediate



-13-

from physical considerations. One would expect in place

of (2) merely the relation Q' -0.

8. PROOF OF NONNEGATIVITY

Local existence and nennegativity of solutions can

be established in several different ways. One way is to

convert the original system of differential equations

into a set of integral equations. Let us begin by

writing the differential equations in the form

(1) d(e-DYR(x)e- Dx ) - e-DX[B + R(x)BR(x)]e- Dx , R(xO ) - RO ,

dx(T(x)e- DX) - T(x)BR(x)e- D x , T(xO ) - To,

dx(L(x)e - Dx ) = [L(x)BR(x) + F + FR(x)]e - Dx , L(x O ) - LO .

Thus an appropriate set of integral equations is

D(x-x0 ) D(X-x0 )

(2) R(x) - e Ro e

x eD(x-x 1 ) eD(X-X 1

+ j e ( B + R(x1 )BR(x1 )le )dx 1

W e 1 (R,T,L),

T(x) -To eD (x-xO )  x T(Xl)BR(xl) D(x-xl) 1

- e2 (RT,L),
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D (x-xo)
L(x) - Loe

+ X (L(x1 )BR(xl) + F + FR(xl)]e D(x-x)dx1

= e3(R,T,L).

The principal result we wish to employ to establish

nonnegativity is that dij > 0 implies that eDx  is a

nonnegative matrix for x > 0; see [10].

Consider the space S of triples of continuous

matrix functions R(x), T(x), and L(x) defined on

x0  x < x0 + a, with the initial values R(xO ) -

T(xo) - To, L(xo) - LO, all nonnegative matrices,

satisfying the constraints

(3) IIR(x)I _< cl, HIT(x)II_ cl, IIL(x) II < c 1

where

(4) cI > Max (IIR0oH, IIT0 , IiI.I11.

Consider the mapping e defined on S by means of

the right-hand sides of (2). It is readily seen that T

is a contractive mapping of S into itself, provided

that a is sufficiently small. Thus, by virtue of the

Cacciopoli fixed-point theorem, e has a unique fixed

point, the solution of (2).

Alternatively, we can construct the solutions as

the limit of a sequence of successive approximations
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given by

(5) Rn+ 1 ' el(R nTnh), n > 0,

T n+ = 02 (RnTnLn),

Ln+l - ' 3 (Rn,Tn,Ln).

Applying the foregoing result with x0 - 0, c1 > N,

where N is the dimension of the system, we obtain a

solution over an interval 0 < x < a. From the conserva-

tion relation combined with the nonnegativity of R(x),

T(x), L(x) on 0 < x < a, it follows that R(x), T(x),

L(x) are uniformly bounded. In fact,

(6) IIR(x)t1, IIT(x)ll, IIL(x)I I _ N, 0 < x < a.

We can therefore apply the result with x0 - a and

the same cI as before. The solution can thus be

continued indefinitely.

A third approach starts with the difference equations

obtained from (5.2) by neglecting the terms which are

O(A2 ). The matrices R(x), T(x), L(x) are defined in

this way for x - 0, A, 26, ''', and defined by means of

linear interpolation for other values of x. Since

I + DA > 0 for small A, we see that the matrices

obtained in this fashion are nonnegative for x Z 0.

As is well known, these functions approach the solutions

of the differential equation in an initial Interval

0 , x , b, thus once again establishing nonnegativity.
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9. STATEMENT OF RESULT

We have thus established the following result.

Theorem. If

(1) (a) bij(x) > 0,

(b) d ii(x) > 0, 1 J,

(c) f ii(x) > 0,

and

M(B(x) + D(x) + F(x)) 0 o

for x > 0, where B = (bij(x)), D = (dij(x)),

F = (faa(x)6ij), and M - (6j), then the equations

(2) R'(x) - B + DR(x) + R(x)D + R(x)BR(x), R(O) - 0,

T'(x) = T(x)(D + BR(x)), T(O) - I,

L'(x) - L(x)(D + BR(x)) + F(I + R(x)), L(O) - 0,

possess a unique solution for x > 0. This solution

satisfies the conservation relation

(3) M(R(x) + T(x) + L(x)) - M,

for x > 0.

In physical terms, this means that the reflection,

transmission, and loss matrices are defined for x > 0,

and satisfy the equations of invariant imbedding.
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